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1.0 PROJECT OBJECTIVE

To demonstrate the feasibility of eliminating flux transients in molecular beam
epitaxy (MBE). Specifically the technical objectives are as follows:

o Investigate transient mechanism and modify current MBE source assembly
design and its temperature ramping procedure to test flux transient reduction

o Perform experiments to demonstrate elimination of transients

20 PROJECT SUMMARY

MBE has become a critical technique for fabricating a wide variety of semiconductor
devices. Source flux transient during growth however is a major cause of composition
and layer thickness variation and is especially problematic for structures of very thin
layers. During the course of this project we have investigated several possible causes of
the flux transient, designed remedies and demonstrated elimination of the problem. Flux
transient is a result of thermal perturbation due to source shutter opening. To isolate
factors that could reduce this perturbance we carried out detailed experiments with
controlled source environment. Source geometry, shutter material and action, and various
source cell temperature routines have been experimented. The results are very promising.
We have clearly shown that the flux transients can be eliminated with proper control of
the source operation.

We found in this investigation that the mass spectrometer (MS) sensitivity varies with As
partial pressure in the system and therefore the Ga flux measured by the MS is distorted.
We have developed a technique to measure flux transient by RHEED intensity oscillation.
The flux variation as measured by RHEED intensity oscillation differs from that by the
MS. Since the former measures the growth rate, the true effect of the transient is
manifested by this measurement. Because the flux transient depends on so many dynamic
process variables, we believe in future studies the process can be optimized by using
Artificial Intellience (AI) and fuzzy logic type of control.




Summary of Phase I achievements are listed below:

3.0

3.1

Tested refined designs of the shutter and source, including heated PBN
shutter and dual filament cell

Demonstrated minimized transient with temperature ramping

Investigate for the first time Ga transient in As pressure in realistic growth
enviornment

Discovered MS sensitivity altered by As pressure
Developed technique to measure growth rate change due to the transient

Eliminated transient with a mass spectrometer feedback control of the
sources '

FLUX TRANSIENT EXPERIMENTS

Ga Flux Transient Measurement and Correction

In contrast to other transienet studies, this investigation included measurements done in
real growth conditions. The experiments were carried out in a SVT-GaAs MBE system
that is designed to provide uniform 3" wafer growth. Figure (1) shows a schematic of the
MBE system.  This system is equipped with a full complement of eight effusion sources
and a substrate manipulator that is capable of heating the sample to 1,000C. A
combination of ion and cryopump was used to achieve a base pressure reaching about
1x10°10 Torr. A unique feature of the growth chamber is that a mass spectrometer is
situated next to the substrate such that the meeasured flux signals represent realistic
growth conditions. Reflection High Energy Electron Diffraction (RHEED) was used to
verify the transient level. Realistic flux transient effects were found under typical growth
conditions.
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Figure 1. Laboratory MBE System at Superior Vacuum Technology (SVT)

Molecular beam flux is formed by evaporating material from an effusion cell. Since the
vapor pressure of any material is an exponential function of the temperature, the
magnitude of the molecular flux is affected strongly by the thermal environment in the
cell. Opening and closing of the source shutter in front of the cell invariably perturb this
thermal equilibrium, and it has long been noted that the shutter actuation cause flux
transient in the molecular beam making exact control of the composition and thin layer.
thickness difficult. During Phase I we have carried out a systematic investigation to
isolate factors that could reduce this perturbance. Since the partial vapor pressure of the
evaporant, and hence the beam flux, depends exponentially on the material temperature,
the flux can be approximately described by

F(t) =F (Tg) + SF(T}-Ty) e-t (1)

where F(t) is the time (t) dependent flux, after the shutter is opened,
F (Tg) is the equilibrium beam flux
T is the operating temperature of the cell during growth,
T is the initial cell temperature, and
3 F is the flux difference due to temperature change.




We have looked into the effects of source geometry, shutter material and action, and
various source cell temperature routines. In the following we will present the results and
discuss solutions to eliminate the flux transient problem.

Figure (2) shows a typical mass spectrometer (MS) trace of the Ga flux signal that shows
approximately 13% transient (the second term in equation 1) as the shutter is opened.
Note there is also the more long term (on the order of several minutes) down drift even
though the cell temperature is regulated by a thermal couple.  This level of transientis
actually less than many other commercial MBE systems would generate but it is a
significant problem for precision control of the layer thickness and composition.
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Figure 2. Flux Transient in a Gallium Cell

The most common strategy for reducing flux transient is by varying the cell temperature.
By quickly ramping up the temperature to a few degrees above the set point as the shutter
is being opened, one could even out the thermal perturbation and significantly reduce the
transient. ' This is to compensate for the heat loss due to shutter opening as described by
the second term in equation (1). The amount of temperature variance depends on the
cell set temperature, crucible shape and cell-shutter orientation. By monitoring with a
mass spectrometer (MS) we were able to optimize the ramping sequence to obtain a fairly
small flux transient, as shown in Figure (3). The cell temperature was raised quickly
before the the shutter opening.
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Figure 3. Flux Signal Transient Reduction Due to Temperature Ramping

Further improvement was realized with a muiti-step ramping sequence. One example
shown below used a three step ramping. The cell temperature was first raised 5 seconds

and then lowered as the shutter is opened, before finally raised again to attain the
equilibri um operating level. Figure (4) shows that the flux transient was totally

eliminated. The reason of the improved result is due to compensation for the delayed

thermal response of the cell.
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Figure (4). Stable Ga Flux by a Three-Step Cell Ramping Proceaure.




Having established a significant transient reduction we undertook to investigate other
relevant factors that cculd bring further improvement. We studied shutter action and
alternate matenials for shutter. A special cell/shutter flange with water cooling was built
for this purpose as shown in Figure (5). Normalily the shutter is made of Mo but it is
changed to pyrolytic boron nitrite (PBN) in the photo. Both Mo and PBN have been used
in the test. PBN transmits infrared radiation much better than Mo so it causes less
thermal fluctuation during the shuttering action. To prevent condensation a shutter heater
filament is wound to the PBN shutter. However our study did not show significant
difference in the two cases.

Figure 5. Photo of a Cell/Shutter Assembly




We found that shutter speed is a factor in transient variation. Instead of the proposed
double deck shutter we tried slower shutter speed to achieve the same objective of
gradually varying the thermal environment. Figure (6) shows a trace of the transient with
opening time of 1 second instead of normal 0.1 second. As might be expected the slow
action shutter creates smaller transient. In particular the sharp rise is eliminated. Although
in practice such slow time is not acceptable this measurement did verify the importance of
the shutter action and could lead to more advanced shutter design.
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Figure 6. Transients of Slow Shutter Opening Speed.

We observed very stable flux oscillations using a two zone cell. Instead of the normal
single heater filament winding there are two windings, one around the bottom half of the
cell and the other around the upper part and the lip section of the cell. The purpose of
the upper heater is to compensate the heat loss through the cell opening.  Figure (7)
shows the RHEED intensity oscillation of GaAs. It can be seen that the oscillation period
is very constant even after many cycles. Since the GaAs growth rate is dependent on the
Ga flux arrival rate, we are basically following the the Ga flux arrival. The result is
indicative of lack of transient in Ga flux.
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Fgiure 7. RHEED Oscillation of GaAs with a Two-Zone Cell.

The RHEED technique was exploited for more sophisticated application. In the Phase I
proposal we planned to develop a real time surface lattice constant measuring technique
using an electro-magnetic field to scan the primary RHEED electron beam.  Since the
lattice constant changes according to layer composition, the measurement would indicate
any change in deposited layer composition due to flux variation. To illustrate the
techniquempminFim@)mhnagemoftheRHEEDamlyxisukenbya
video camera. The upper right hand corner figure displays the RHEED diffraction spots
as they appeared on the phosphor screen. The inset below shows the relative positions of
thedifﬁ‘acﬁonpeaksmdthedistmcebetweenthedim'actedpuksisinvemdy
proportional to the lattice constant.
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Figure 8. RHEED Image Analysis Display

The analysis is aided by electromagnetically sweeping the diffraction spots across &
detector so that the distance between spots can be computed. The electromagnetic coil is
wound to produce a peak magnetic field of 200 Gauss which is adequate to scan all the
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first order spots. All the spots are swept across a photomuitiplier whose signals are sent
to an A/D converter and then to the computer for analysis. Figure (9) shows a schematic
of the experimental set up. The lattice constant is calculated by measuring the
electromagnetic field necessary to scan two diffraction spots. The intensity of the several
diffraction spots in one scan is displayed in Figure (10) . A computer program is written
to compute the lattice constants automatically. A complete scan takes less than one
second so the timing is compatible with typical MBE growth rate. By continuously
monitoring the lattice constant one is able to detect any composition change due to flux

variation. This technique can therefore provide feedback for flux control which will be
pursued in future work. - A
Coils

Growth photomultiplier
Chamber L((

D/A converter Computer AJD converter
Figure 9. Distance of Movement of the Diffraction Spot as Function of Applied Voltage
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Figure 10. Diffraction Intensity as Measured by the Electromagnetic Coil Scan
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3.2  Mass Spectrometer Feedback Flux Control

Since the mass spectrometer (MS) has proven to be a sensitive flux monitor, it leads
naturally to experimenting with feedback from the MS for flux control. A special
computer program was set up to compare the measured mass peak with a set value and
then adjust the cell temperature accordingly. The experiment was very successful and
clearly indicated that the feedback can control the flux very accurately and quickly to
maintain stable flux. Figure (11) is a flux measurement that shows very stable flux level
for the test interval. It demonstrated that using the MS feedback control can eliminate the
flux transient.
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Figure 11 . Mass Spectrometer Controlled Ga Flux

Similar result was also obtained for the Al flux. We therefore believe that in future work
it shall be possible to achieve real time control of the Al/Ga flux ratio, and thus the layer
composition, very accurately using the MS in a multiplexed mode.
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3.3  Flux Transients During MBE Growth

It is not straight forward, however, as we found out, to interprete the MS data as they are
influenced by the presence of other species. The growth process takes place in a dynamic
environment-where a multiple of sources are simultaneously present. However, as far as
we know there has been no investigation on flux transient during the growth. Therefore
we undertook to study the transient behavior of the Ga source when As flux is also
presen. It was immediately apparent that the As presence has altered the MS
measurement. Figure (12) illustrates two traces of the Ga flux: trace (a) is a transient with
the As off and trace (b) is with the As on. It can be clearly seen that the presence of As
affected the transient behavior drastically. Note in particular the time interval
immediately after shutter opening where the transients appeared very different. Although
there is a possibility that this may be due to flux collision effect we believe that the real
reason is changes of the ionizer characteristics due to
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rising As partial pressure. We were able to perform an experiment in that the Ga flux was
maintained at a constant level while the As partial pressure was varied by adjusting the
opening of an As valved cracker almost instantaneously.  Figure (13) shows the Ga
signals as a function of the As pressure which exhibited a very nonlinear behavior. Note
that the As pressure covers the important growth operating range.
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Figure 13. Mass Spectrum Signal of a Constant Ga Flux as Function of As Pressure.

To confirm our suspicion that the MS measurement may vary at different As levels we
explore using RHEED to monitor the transient since it represents what really occurrs at
the growing surface. Normally we use a Fourier Transform routine to compute the
growth rate from RHEED intensity oscillations. However, because the computation
averages over several periods it is not very sensitive to small variation from one period to
the next. We therefore developed a special computer routine to calculate the rate from
individual periods. Since the growth rate is linear with the Ga flux arrival it should vary
exactly as the Ga transient. In Figure (14) we present the RHEED data (a) as well as the
transient (b) measured in this manner. We can say in confidence that this represents the
real transient and the transient is less than that obtained by MS of the Ga flux alone. We
conclude that transient results reported in the literature is probably 40% too high.
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40 SUMMARY CONCLUSION AND RECOMMENDATION

Superior Vacuum Technology has carried out thorough characterization of source flux
transient in III-V MBE. Substantial efforts have been spent on testing different
experimental parameters. We have investigated several relevant factors affecting flux
transients. It is determined that the flux transient can be much reduced by suitable heat
ramping sequence; it should be especially effective with a dual filament cell. The shutter
action affects the thermal environment and thus the flux transient but the shutter heater did
not seem to make significant difference on its own. Real growth transient has been
obtained for the first time using RHEED analysis. Most importantly real time feedback,
either with a MS or some other technique, provides transient free flux.

The Phase I results provided an excellent foundation for future investigation in Phase II of
the program. We will further optimize the performance of the sources and study the
effects that could impact the MS behavior so that the MS may be used as a useful in-situ
feedback sensor for MBE process control. Al control algorithm will be incoporated to
optimize the control process. The MBE growth is a dynamic process in that many
parameters are inter-related. Because there are often interaction between control loops a
better control method would be to take into account these interactions. This is more
difficult control application but would be well suited for a fuzzy logic controller because
the interactions do not need to be characterized by a complicated mathematical model. It
is possible to create a multiple input, multiple output fuzzy logic controller with relative
ease. If this is coupled with Al it could automatically adjust the control parameters to
obtain the best results.
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